Join us

ContentUpdates from FAUN.dev()...
Link
@kala shared a link, 1 month ago
FAUN.dev()

I regret building this $3000 Pi AI cluster

A 10-node Raspberry Pi 5 cluster built with16GB CM5 Lite modulestopped out at325 Gflops- then got lapped by an $8K x86 Framework PC cluster running4x faster. On the bright side? The Pi setup edged out in energy efficiency when pushed to thermal limits. It came with160 GB total RAM, but that didn’t h.. read more  

I regret building this $3000 Pi AI cluster
Link
@kala shared a link, 1 month ago
FAUN.dev()

Why open source may not survive the rise of generative AI

Generative AI is snapping the attribution chain thatcopyleft licenseslike theGNU GPLrely on. Without clear provenance, license terms get lost. Compliance? Forget it. The give-and-take that powersFOSSstops giving - or taking... read more  

Why open source may not survive the rise of generative AI
Link
@kala shared a link, 1 month ago
FAUN.dev()

Optimizing document AI and structured outputs by fine-tuning Amazon Nova Models and on-demand inference

Amazon rolled out fine-tuning and distillation forVision LLMslike Nova Lite viaBedrockandSageMaker. Translation: better doc parsing—think messy tax forms, receipts, invoices. Developers get two tuning paths:PEFTor full fine-tune. Then choose how to ship:on-demand inference (ODI)orProvisioned Through.. read more  

Optimizing document AI and structured outputs by fine-tuning Amazon Nova Models and on-demand inference
Link
@kala shared a link, 1 month ago
FAUN.dev()

What Significance Testing is, Why it matters, Various Types and Interpreting the p-Value

Significance testing determines if observed differences are meaningful by calculating the likelihood of results happening by chance. The p-value indicates this likelihood, with values below 0.05 suggesting statistical significance. Different tests, such as t-tests, ANOVA, and chi-square, help analyz.. read more  

Link
@kala shared a link, 1 month ago
FAUN.dev()

Post-Training Generative Recommenders with Advantage-Weighted Supervised Finetuning

Generative recommender systems need more than just observed user behavior to make accurate recommendations. Introducing A-SFT algorithm improves alignment between pre-trained models and reward models for more effective post-training... read more  

Link
@devopslinks shared a link, 1 month ago
FAUN.dev()

A FinOps Guide to Comparing Containers and Serverless Functions for Compute

AWS dropped a new cost-performance playbook pittingAmazon ECSagainstAWS Lambda. It's not just a tech choice - it’s a workload strategy. Go containers when you’ve got steady traffic, high CPU or memory needs, or sticky app state. Go serverless for spiky, event-driven bursts that don’t need a long lea.. read more  

A FinOps Guide to Comparing Containers and Serverless Functions for Compute
Link
@devopslinks shared a link, 1 month ago
FAUN.dev()

How and Why Netflix Built a Real-Time Distributed Graph -  Ingesting and Processing Data Streams at Internet Scale

Netflix built a Real-Time Distributed Graph (RDG) to connect member interactions across different devices instantly. Using Apache Flink and Kafka, they process up to1 millionmessages per second for node and edge updates. Scaling Flink jobs individually reduced operational headaches and allowed for s.. read more  

Link
@devopslinks shared a link, 1 month ago
FAUN.dev()

Jump Starting Quantum Computing on Azure

Microsoft just pulled off full-stack quantum teleportation withAzure Quantum, wiring up Qiskit and Quantinuum’s simulator in the process. Entanglement? Check. Hadamard and CNOT gates set the stage. Classical control logic wrangles the flow. Validation lands cleanly on the backend... read more  

Link
@devopslinks shared a link, 1 month ago
FAUN.dev()

What is autonomous validation? The future of CI/CD in the AI era

CircleCI droppedautonomous validation, a smarter CI/CD that thinks on its feet. It scans your code, predicts breakage, runs only the tests that matter - and fixes the easy stuff on its own. If things get messy, it hands off full context so you’re not digging through logs. Bonus: it keeps learning fr.. read more  

What is autonomous validation? The future of CI/CD in the AI era
News
@kala shared an update, 1 month ago
FAUN.dev()

FSF Talks GPL Compliance and AI Code at GNU Cauldron

The FSF's Licensing and Compliance Lab engaged with GNU toolchain maintainers at GNU Cauldron to discuss GPL compliance, AI-generated code, and attribution in containerized environments.

FSF Talks GPL Compliance and AI Code at GNU Cauldron
FAUN.dev() is a developer-first platform built with a simple goal: help engineers stay sharp without wasting their time. It curates practical newsletters, thoughtful technical blogs, and useful developer tools that focus on signal over noise.

Created by engineers, for engineers, FAUN.dev() is where experienced developers turn to keep up with the fast-moving world of DevOps, Kubernetes, Cloud Native, AI, and modern programming. We handpick what matters and skip the fluff.

If it’s on FAUN.dev(), it’s worth your attention.

Beyond curation, we run a course marketplace (WIP) designed to keep developers current. These courses go deep into the subjects that shape real-world work—things like Kubernetes internals, modern DevOps workflows, cloud-native architecture, and using AI tools to build faster and smarter. It’s practical learning, taught by people who’ve done the work. Developers from companies like GitHub, Netflix, and Shopify already rely on FAUN.dev() to stay on top of their game. They trust us because we keep it real: no hype, no filler, just what you need to grow and do your best work. For sponsors and partners, FAUN.dev() offers access to a focused, engaged audience of technical professionals. This isn’t just another broad developer community—it’s a place where smart engineers go to get smarter. If you have something meaningful to offer them, you’ll be in good company. In short, FAUN.dev() is more than a content hub. It’s a place to grow, to learn, and to connect with what really matters in software today.